MULTIPLE SOLUTIONS FOR A DIRICHLET PROBLEM WITH p-LAPLACIAN AND SET-VALUED NONLINEARITY

نویسندگان

  • D. AVERNA
  • S. A. MARANO
چکیده

The existence of a negative solution, of a positive solution, and of a sign-changing solution to a Dirichlet eigenvalue problem with p-Laplacian and multi-valued nonlinearity is investigated via suband supersolution methods as well as variational techniques for nonsmooth functions. 2000 Mathematics subject classification: 35J20, 35J85, 49J40.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS

The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...

متن کامل

Existence Results For Dirichlet Problems With Degenerated p-Laplacian And p-Biharmonic Operators∗

In this article, we prove the existence and uniqueness of solutions for the Dirichlet problem (P ) { ∆(ω(x)|∆u|∆u)− div[ω(x)|∇u|∇u] = f(x)− div(G(x)), in Ω u(x) = 0, in ∂Ω where Ω is a bounded open set of R (N≥2), f∈L (Ω, ω) and G/ω∈[L (Ω, ω)] .

متن کامل

BIFURCATION ALONG CURVES FOR THE p-LAPLACIAN WITH RADIAL SYMMETRY

We study the global structure of the set of radial solutions of a nonlinear Dirichlet eigenvalue problem involving the p-Laplacian with p > 2, in the unit ball of RN , N > 1. We show that all non-trivial radial solutions lie on smooth curves of respectively positive and negative solutions, bifurcating from the first eigenvalue of a weighted p-linear problem. Our approach involves a local bifurc...

متن کامل

Graphs of Finite Measure

We consider weighted graphs with an infinite set of vertices. We show that boundedness of all functions of finite energy can be seen as a notion of ‘relative compactness’ for such graphs and study sufficient and necessary conditions for this property in terms of various metrics. We then equip graphs satisfying this property with a finite measure and investigate the associated Laplacian and its ...

متن کامل

Convergence Analysis of a Galerkin Boundary Element Method for the Dirichlet Laplacian Eigenvalue Problem

In this paper, a rigorous convergence and error analysis of a Galerkin boundary element method for the Dirichlet Laplacian eigenvalue problem is presented. The formulation of the eigenvalue problem in terms of a boundary integral equation yields a nonlinear boundary integral operator eigenvalue problem. This nonlinear eigenvalue problem and its Galerkin approximation are analyzed in the framewo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008